Antagonism between high pressure and anesthetics in the thermal phase-transition of dipalmitoyl phosphatidylcholine bilayer.

نویسندگان

  • H Kamaya
  • I Ueda
  • P S Moore
  • H Eyring
چکیده

The antagonizing action of hydrostatic pressure against anesthesia is well known. The present study was undertaken to quantitate the effects of hydrostatic pressure and anesthetics upon the phase-transition temperature of dipalmitoyl phosphatidylcholine vesicles. The drugs used to anesthetize the phospholipid vesicles included an inhalation anesthetic, halothane, a dissociable local anesthetic, lidocaine and an undissociable local anesthetic, benzyl alcohol. All anesthetics decreased the phase-transition temperature dose-dependently. In the case of lidocaine, the depression was pH dependent and only uncharged molecules were effective. The application of hydrostatic pressure increased the phase-transition temperature both in the presence and the absence of anesthetics. The temperature-pressure relationship was linear over the entire pressure range studied up to 340 bars. Through the use of Clapeyron-Clausius equation, the volume change accompanying the phase-transition of the membrane was calculated to be 27.0 cm3/mol. Although the anesthetics decreased the phase-transition temperature, the molar volume change accompanying the phase-transition was not altered. The anesthetics displaced the temperature-pressure lines parallel to each other. The mole fraction of the anesthetics in the liquid crystalline membrane, calculated from the van't Hoff equation, was independent of pressure. This implies that pressure does not displace the anesthetics from the liquid membrane, and the partition of these agents remains constant. The volume change of the anesthetized phospholipid membranes is entirely dependent upon the phase-transition and not on the space occupied by the anesthetics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of anesthetics and pressure on the thermotropic behavior of multilamellar dipalmitoylphosphatidylcholine liposomes.

The effects of gaseous anesthetics and pressure on the thermotropic behavior of multilamellar dipalmitoyl-phosphatidylcholine liposomes were studied by using a high-sensitivity differential scanning calorimeter. It was found that halothane and enflurane decreased the transition temperature and increased the width of the transition without affecting the enthalpy change for the main gel-to-liquid...

متن کامل

The antagonistic effect of an inhalation anesthetic and high pressure on the phase diagram of mixed dipalmitoyl-dimyristoylphosphatidylcholine bilayers.

Several workers have shown that phase transition-related changes in membrane lipids have a profound effect on membrane-solvated protein function. This phase transition temperature dependence has been explained as resulting from the formation of lateral phase separations within the membrane bilayer. The present study demonstrates that a clinical concentration of an inhalation anesthetic produces...

متن کامل

Pressure-induced ordering in mixed-lipid bilayers.

Isothermal application of hydrostatic pressure to liquid crystalline phospholipid bilayers increases chain segment orientational order and thus chain extension. By using pressure to perturb chain order in single-component bilayers and bilayers comprising a binary mixture of lipids, it is possible to compare the relative influences of intrinsic lipid properties and collective bilayer properties ...

متن کامل

Shifts in chain-melting transition temperature of liposomal membranes by polymer-grafted lipids.

The chain-melting transition temperature of dipalmitoyl phosphatidylcholine (DPPC) bilayer membranes containing poly(ethylene glycol)-grafted dipalmitoyl phosphatidylethanolamine (PEG-DPPE) was determined by optical turbidity measurements. The dependence on content, Xp, of PEG-DPPE lipid was studied for different polar headgroup sizes, np, of the polymer lipid, throughout the lamellar phase of ...

متن کامل

Detection of phospholipid phase separation. A multifrequency phase fluorimetry study of 1,6-diphenyl-1,3,5-hexatriene fluorescence.

Using multifrequency phase and modulation fluorometry and a nonlinear least-squares analysis of lifetime data, we were able to determine the complex decay of 1,6-diphenyl-1,3,5-hexatriene (DPH) in synthetic phospholipid bilayers. Our results showed a monoexponential decay of DPH in the pure isotropic solvents studied, over a wide temperature range, and a double-exponential decay of DPH in phosp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 550 1  شماره 

صفحات  -

تاریخ انتشار 1979